PhpSpreadsheet/Classes/PHPExcel/Shared/trend/exponentialBestFitClass.php

147 lines
4.8 KiB
PHP
Raw Normal View History

<?php
/**
* PHPExcel
*
2015-05-02 22:50:37 +00:00
* Copyright (c) 2006 - 2015 PHPExcel
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* @category PHPExcel
* @package PHPExcel_Shared_Trend
2015-05-02 22:50:37 +00:00
* @copyright Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
2015-05-12 09:22:06 +00:00
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
* @version ##VERSION##, ##DATE##
*/
require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');
/**
* PHPExcel_Exponential_Best_Fit
*
* @category PHPExcel
* @package PHPExcel_Shared_Trend
2015-05-02 22:50:37 +00:00
* @copyright Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
*/
class PHPExcel_Exponential_Best_Fit extends PHPExcel_Best_Fit
{
2015-05-12 09:22:06 +00:00
/**
* Algorithm type to use for best-fit
* (Name of this trend class)
*
* @var string
**/
protected $_bestFitType = 'exponential';
/**
* Return the Y-Value for a specified value of X
*
* @param float $xValue X-Value
* @return float Y-Value
**/
2015-05-16 17:00:31 +00:00
public function getValueOfYForX($xValue)
{
2015-05-12 09:22:06 +00:00
return $this->getIntersect() * pow($this->getSlope(),($xValue - $this->_Xoffset));
} // function getValueOfYForX()
/**
* Return the X-Value for a specified value of Y
*
* @param float $yValue Y-Value
* @return float X-Value
**/
2015-05-16 17:00:31 +00:00
public function getValueOfXForY($yValue)
{
2015-05-12 09:22:06 +00:00
return log(($yValue + $this->_Yoffset) / $this->getIntersect()) / log($this->getSlope());
} // function getValueOfXForY()
/**
* Return the Equation of the best-fit line
*
* @param int $dp Number of places of decimal precision to display
* @return string
**/
2015-05-16 17:00:31 +00:00
public function getEquation($dp = 0)
{
2015-05-12 09:22:06 +00:00
$slope = $this->getSlope($dp);
$intersect = $this->getIntersect($dp);
return 'Y = '.$intersect.' * '.$slope.'^X';
} // function getEquation()
/**
* Return the Slope of the line
*
* @param int $dp Number of places of decimal precision to display
* @return string
**/
2015-05-16 17:00:31 +00:00
public function getSlope($dp = 0)
{
2015-05-12 09:22:06 +00:00
if ($dp != 0) {
2015-05-13 10:27:01 +00:00
return round(exp($this->_slope), $dp);
2015-05-12 09:22:06 +00:00
}
return exp($this->_slope);
} // function getSlope()
/**
* Return the Value of X where it intersects Y = 0
*
* @param int $dp Number of places of decimal precision to display
* @return string
**/
2015-05-16 17:00:31 +00:00
public function getIntersect($dp = 0)
{
2015-05-12 09:22:06 +00:00
if ($dp != 0) {
2015-05-13 10:27:01 +00:00
return round(exp($this->_intersect), $dp);
2015-05-12 09:22:06 +00:00
}
return exp($this->_intersect);
} // function getIntersect()
/**
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
*
* @param float[] $yValues The set of Y-values for this regression
* @param float[] $xValues The set of X-values for this regression
* @param boolean $const
*/
2015-05-16 17:00:31 +00:00
private function _exponential_regression($yValues, $xValues, $const)
{
2015-05-13 10:27:01 +00:00
foreach ($yValues as &$value) {
2015-05-12 09:22:06 +00:00
if ($value < 0.0) {
$value = 0 - log(abs($value));
} elseif ($value > 0.0) {
$value = log($value);
}
}
unset($value);
$this->_leastSquareFit($yValues, $xValues, $const);
} // function _exponential_regression()
/**
* Define the regression and calculate the goodness of fit for a set of X and Y data values
*
* @param float[] $yValues The set of Y-values for this regression
* @param float[] $xValues The set of X-values for this regression
* @param boolean $const
*/
2015-05-16 17:00:31 +00:00
function __construct($yValues, $xValues = array(), $const = true)
{
if (parent::__construct($yValues, $xValues) !== false) {
2015-05-12 09:22:06 +00:00
$this->_exponential_regression($yValues, $xValues, $const);
}
} // function __construct()
2015-05-16 17:00:31 +00:00
}