#401 : Support for namespaces
This commit is contained in:
parent
dc3e96091a
commit
2c245ab725
@ -1,138 +0,0 @@
|
||||
<?php
|
||||
|
||||
namespace PHPExcel\Shared\trend;
|
||||
|
||||
/**
|
||||
* PHPExcel_Exponential_Best_Fit
|
||||
*
|
||||
* Copyright (c) 2006 - 2015 PHPExcel
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*
|
||||
* @category PHPExcel
|
||||
* @package PHPExcel_Shared_Trend
|
||||
* @copyright Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
||||
* @version ##VERSION##, ##DATE##
|
||||
*/
|
||||
class ExponentialBestFit extends BestFit
|
||||
{
|
||||
/**
|
||||
* Algorithm type to use for best-fit
|
||||
* (Name of this trend class)
|
||||
*
|
||||
* @var string
|
||||
**/
|
||||
protected $bestFitType = 'exponential';
|
||||
|
||||
/**
|
||||
* Return the Y-Value for a specified value of X
|
||||
*
|
||||
* @param float $xValue X-Value
|
||||
* @return float Y-Value
|
||||
**/
|
||||
public function getValueOfYForX($xValue)
|
||||
{
|
||||
return $this->getIntersect() * pow($this->getSlope(), ($xValue - $this->xOffset));
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the X-Value for a specified value of Y
|
||||
*
|
||||
* @param float $yValue Y-Value
|
||||
* @return float X-Value
|
||||
**/
|
||||
public function getValueOfXForY($yValue)
|
||||
{
|
||||
return log(($yValue + $this->yOffset) / $this->getIntersect()) / log($this->getSlope());
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Equation of the best-fit line
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
* @return string
|
||||
**/
|
||||
public function getEquation($dp = 0)
|
||||
{
|
||||
$slope = $this->getSlope($dp);
|
||||
$intersect = $this->getIntersect($dp);
|
||||
|
||||
return 'Y = ' . $intersect . ' * ' . $slope . '^X';
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Slope of the line
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
* @return string
|
||||
**/
|
||||
public function getSlope($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round(exp($this->_slope), $dp);
|
||||
}
|
||||
return exp($this->_slope);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Value of X where it intersects Y = 0
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
* @return string
|
||||
**/
|
||||
public function getIntersect($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round(exp($this->intersect), $dp);
|
||||
}
|
||||
return exp($this->intersect);
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param boolean $const
|
||||
*/
|
||||
private function exponentialRegression($yValues, $xValues, $const)
|
||||
{
|
||||
foreach ($yValues as &$value) {
|
||||
if ($value < 0.0) {
|
||||
$value = 0 - log(abs($value));
|
||||
} elseif ($value > 0.0) {
|
||||
$value = log($value);
|
||||
}
|
||||
}
|
||||
unset($value);
|
||||
|
||||
$this->leastSquareFit($yValues, $xValues, $const);
|
||||
}
|
||||
|
||||
/**
|
||||
* Define the regression and calculate the goodness of fit for a set of X and Y data values
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param boolean $const
|
||||
*/
|
||||
public function __construct($yValues, $xValues = array(), $const = true)
|
||||
{
|
||||
if (parent::__construct($yValues, $xValues) !== false) {
|
||||
$this->exponentialRegression($yValues, $xValues, $const);
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user