_error; } // function getBestFitType() public function getBestFitType() { return $this->_bestFitType; } // function getBestFitType() /** * Return the Y-Value for a specified value of X * * @param float $xValue X-Value * @return float Y-Value */ public function getValueOfYForX($xValue) { return false; } // function getValueOfYForX() /** * Return the X-Value for a specified value of Y * * @param float $yValue Y-Value * @return float X-Value */ public function getValueOfXForY($yValue) { return false; } // function getValueOfXForY() /** * Return the original set of X-Values * * @return float[] X-Values */ public function getXValues() { return $this->_xValues; } // function getValueOfXForY() /** * Return the Equation of the best-fit line * * @param int $dp Number of places of decimal precision to display * @return string */ public function getEquation($dp = 0) { return false; } // function getEquation() /** * Return the Slope of the line * * @param int $dp Number of places of decimal precision to display * @return string */ public function getSlope($dp = 0) { if ($dp != 0) { return round($this->_slope, $dp); } return $this->_slope; } // function getSlope() /** * Return the standard error of the Slope * * @param int $dp Number of places of decimal precision to display * @return string */ public function getSlopeSE($dp = 0) { if ($dp != 0) { return round($this->_slopeSE, $dp); } return $this->_slopeSE; } // function getSlopeSE() /** * Return the Value of X where it intersects Y = 0 * * @param int $dp Number of places of decimal precision to display * @return string */ public function getIntersect($dp = 0) { if ($dp != 0) { return round($this->_intersect, $dp); } return $this->_intersect; } // function getIntersect() /** * Return the standard error of the Intersect * * @param int $dp Number of places of decimal precision to display * @return string */ public function getIntersectSE($dp = 0) { if ($dp != 0) { return round($this->_intersectSE, $dp); } return $this->_intersectSE; } // function getIntersectSE() /** * Return the goodness of fit for this regression * * @param int $dp Number of places of decimal precision to return * @return float */ public function getGoodnessOfFit($dp = 0) { if ($dp != 0) { return round($this->_goodnessOfFit, $dp); } return $this->_goodnessOfFit; } // function getGoodnessOfFit() public function getGoodnessOfFitPercent($dp = 0) { if ($dp != 0) { return round($this->_goodnessOfFit * 100, $dp); } return $this->_goodnessOfFit * 100; } // function getGoodnessOfFitPercent() /** * Return the standard deviation of the residuals for this regression * * @param int $dp Number of places of decimal precision to return * @return float */ public function getStdevOfResiduals($dp = 0) { if ($dp != 0) { return round($this->_stdevOfResiduals, $dp); } return $this->_stdevOfResiduals; } // function getStdevOfResiduals() public function getSSRegression($dp = 0) { if ($dp != 0) { return round($this->_SSRegression, $dp); } return $this->_SSRegression; } // function getSSRegression() public function getSSResiduals($dp = 0) { if ($dp != 0) { return round($this->_SSResiduals, $dp); } return $this->_SSResiduals; } // function getSSResiduals() public function getDFResiduals($dp = 0) { if ($dp != 0) { return round($this->_DFResiduals, $dp); } return $this->_DFResiduals; } // function getDFResiduals() public function getF($dp = 0) { if ($dp != 0) { return round($this->_F, $dp); } return $this->_F; } // function getF() public function getCovariance($dp = 0) { if ($dp != 0) { return round($this->_covariance, $dp); } return $this->_covariance; } // function getCovariance() public function getCorrelation($dp = 0) { if ($dp != 0) { return round($this->_correlation, $dp); } return $this->_correlation; } // function getCorrelation() public function getYBestFitValues() { return $this->_yBestFitValues; } // function getYBestFitValues() protected function _calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const) { $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0; foreach ($this->_xValues as $xKey => $xValue) { $bestFitY = $this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); $SSres += ($this->_yValues[$xKey] - $bestFitY) * ($this->_yValues[$xKey] - $bestFitY); if ($const) { $SStot += ($this->_yValues[$xKey] - $meanY) * ($this->_yValues[$xKey] - $meanY); } else { $SStot += $this->_yValues[$xKey] * $this->_yValues[$xKey]; } $SScov += ($this->_xValues[$xKey] - $meanX) * ($this->_yValues[$xKey] - $meanY); if ($const) { $SSsex += ($this->_xValues[$xKey] - $meanX) * ($this->_xValues[$xKey] - $meanX); } else { $SSsex += $this->_xValues[$xKey] * $this->_xValues[$xKey]; } } $this->_SSResiduals = $SSres; $this->_DFResiduals = $this->_valueCount - 1 - $const; if ($this->_DFResiduals == 0.0) { $this->_stdevOfResiduals = 0.0; } else { $this->_stdevOfResiduals = sqrt($SSres / $this->_DFResiduals); } if (($SStot == 0.0) || ($SSres == $SStot)) { $this->_goodnessOfFit = 1; } else { $this->_goodnessOfFit = 1 - ($SSres / $SStot); } $this->_SSRegression = $this->_goodnessOfFit * $SStot; $this->_covariance = $SScov / $this->_valueCount; $this->_correlation = ($this->_valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->_valueCount * $sumX2 - pow($sumX, 2)) * ($this->_valueCount * $sumY2 - pow($sumY, 2))); $this->_slopeSE = $this->_stdevOfResiduals / sqrt($SSsex); $this->_intersectSE = $this->_stdevOfResiduals * sqrt(1 / ($this->_valueCount - ($sumX * $sumX) / $sumX2)); if ($this->_SSResiduals != 0.0) { if ($this->_DFResiduals == 0.0) { $this->_F = 0.0; } else { $this->_F = $this->_SSRegression / ($this->_SSResiduals / $this->_DFResiduals); } } else { if ($this->_DFResiduals == 0.0) { $this->_F = 0.0; } else { $this->_F = $this->_SSRegression / $this->_DFResiduals; } } } // function _calculateGoodnessOfFit() protected function _leastSquareFit($yValues, $xValues, $const) { // calculate sums $x_sum = array_sum($xValues); $y_sum = array_sum($yValues); $meanX = $x_sum / $this->_valueCount; $meanY = $y_sum / $this->_valueCount; $mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0; for ($i = 0; $i < $this->_valueCount; ++$i) { $xy_sum += $xValues[$i] * $yValues[$i]; $xx_sum += $xValues[$i] * $xValues[$i]; $yy_sum += $yValues[$i] * $yValues[$i]; if ($const) { $mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY); $mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX); } else { $mBase += $xValues[$i] * $yValues[$i]; $mDivisor += $xValues[$i] * $xValues[$i]; } } // calculate slope // $this->_slope = (($this->_valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->_valueCount * $xx_sum) - ($x_sum * $x_sum)); $this->_slope = $mBase / $mDivisor; // calculate intersect // $this->_intersect = ($y_sum - ($this->_slope * $x_sum)) / $this->_valueCount; if ($const) { $this->_intersect = $meanY - ($this->_slope * $meanX); } else { $this->_intersect = 0; } $this->_calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, $meanX, $meanY, $const); } // function _leastSquareFit() /** * Define the regression * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param boolean $const */ public function __construct($yValues, $xValues = array(), $const = true) { // Calculate number of points $nY = count($yValues); $nX = count($xValues); // Define X Values if necessary if ($nX == 0) { $xValues = range(1, $nY); $nX = $nY; } elseif ($nY != $nX) { // Ensure both arrays of points are the same size $this->_error = true; return false; } $this->_valueCount = $nY; $this->_xValues = $xValues; $this->_yValues = $yValues; } // function __construct() }